Forced draught gas burners

Progressive two-stage operation

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODEL</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>20044636 - 20044637</td>
<td>RS 150</td>
<td>890T3</td>
</tr>
<tr>
<td>20051309 - 20051314</td>
<td>RS 150</td>
<td>890T3</td>
</tr>
</tbody>
</table>
Translation of the original instructions
Contents

1 Declarations ... 3

2 Information and general warnings .. 4
 2.1 Information about the instruction manual ... 4
 2.1.1 Introduction .. 4
 2.1.2 General dangers .. 4
 2.1.3 Other symbols ... 4
 2.1.4 Delivery of the system and the instruction manual ... 5
 2.2 Guarantee and responsibility ... 5

3 Safety and prevention ... 6
 3.1 Introduction .. 6
 3.2 Personnel training ... 6

4 Technical description of the burner ... 7
 4.1 Burner designation ... 7
 4.2 Models available .. 7
 4.3 Burner categories - Countries of destination ... 8
 4.4 Technical data ... 8
 4.5 Maximum dimensions .. 9
 4.6 Firing rate ... 9
 4.6.1 Firing rate based on the air density ... 9
 4.7 Test boiler .. 10
 4.8 Burner description ... 11
 4.9 Burner equipment ... 11
 4.10 Control box (RMG88.62C2) .. 12
 4.11 Servomotor (SQN31.22...) .. 13

5 Installation .. 14
 5.1 Notes on safety for the installation ... 14
 5.2 Handling ... 14
 5.3 Preliminary checks ... 14
 5.4 Operating position ... 15
 5.5 Preparing the boiler ... 15
 5.5.1 Boring the boiler plate ... 15
 5.5.2 Blast tube length .. 15
 5.6 Securing the burner to the boiler ... 16
 5.7 Positioning the probe - electrode ... 17
 5.8 Combustion head adjustment ... 17
 5.8.1 Air adjustment ... 17
 5.8.2 Gas adjustment ... 17
 5.9 Gas feeding .. 19
 5.9.1 Gas feeding line .. 19
 5.9.2 Gas train ... 20
 5.9.3 Gas train installation ... 20
 5.9.4 Gas pressure .. 20
 5.10 Electrical wiring .. 22
 5.10.1 Supply cables and external connections passage ... 22
 5.11 Calibration of the thermal relay ... 23
 5.12 Measuring the ionisation current ... 23

6 Start-up, calibration and operation of the burner ... 24
 6.1 Notes on safety for the first start-up .. 24
 6.2 Adjustments prior to ignition .. 24
 6.3 Burner start-up .. 25
 6.4 Burner ignition .. 25
6.5 Servomotor adjustment...25
6.6 Adjusting the burner..26
 6.6.1 Output upon ignition..26
 6.6.2 Output in 2nd stage..26
 6.6.3 Output in 1st stage..27
 6.6.4 Intermediate outputs ..27
 6.6.5 Air pressure switch..28
 6.6.6 Minimum gas pressure switch..28
6.7 Operation sequence of the burner..29
 6.7.1 Burner start-up...29
 6.7.2 Operation ..29
 6.7.3 Ignition failure..29
 6.7.4 Burner flame goes out during operation..............................30
6.8 Stopping of the burner...30
6.9 Final checks (with burner operating)...30
 6.9.1 Checking the air and gas pressure on the combustion head........30

7 Maintenance ..31
 7.1 Notes on safety for the maintenance..31
 7.2 Maintenance programme..31
 7.2.1 Maintenance frequency..31
 7.2.2 Checking and cleaning...31
 7.3 Opening the burner..32
 7.4 Closing the burner...32

8 Faults - Possible causes - Solutions..33
 8.1 Burner start-up cycle diagnostics..33
 8.2 Resetting of control box and diagnostics use..........................33
 8.3 Control box reset..33
 8.4 Visual diagnostics ..33
 8.5 Software diagnostics..34
 8.6 Normal operation / flame detection time.................................36

A Appendix - Accessories ...37

B Appendix - Electrical panel layout..38
Declarations

1 Declarations

Declarations

Declaration of conformity in accordance with ISO / IEC 17050-1

Manufacturer: RIELLO S.p.A.
Address: Via Pilade Riello, 7
 37045 Legnago (VR)
Product: Forced draught gas burners
Model: RS 150

These products are in compliance with the following Technical Standards:
EN 676
EN 12100

and according to the European Directives:
GAD 2009/142/EC Gas Devices Directive
MD 2006/42/EC Machine Directive
LVD 2006/95/EC Low Voltage Directive
EMC 2004/108/EC Electromagnetic Compatibility

Such products are marked as follows:

In progress

The quality is guaranteed by a quality and management system certified in accordance with UNI EN ISO 9001.

Legnago, 10.10.2013

Executive Director
RIELLO S.p.A. - Burner Department
Mr. G. Conticini

Research & Development Director
RIELLO S.p.A. - Burner Department
Mr. R. Cattaneo
Information and general warnings

2.1 Information about the instruction manual

2.1.1 Introduction
The instruction manual supplied with the burner:
- is an integral and essential part of the product and must not be separated from it; it must therefore be kept carefully for any necessary consultation and must accompany the burner even if it is transferred to another owner or user, or to another system. If the manual is lost or damaged, another copy must be requested from the Technical Assistance Service of the area;
- is designed for use by qualified personnel;
- offers important indications and instructions relating to the installation safety, start-up, use and maintenance of the burner.

Symbols used in the manual
In some parts of the manual you will see triangular DANGER signs. Pay great attention to these, as they indicate a situation of potential danger.

2.1.2 General dangers
The dangers can be of 3 levels, as indicated below.

Maximum danger level!
This symbol indicates operations which, if not carried out correctly, cause serious injury, death or long-term health risks.

This symbol indicates operations which, if not carried out correctly, may cause serious injury, death or long-term health risks.

This symbol indicates operations which, if not carried out correctly, may cause damage to the machine and/or injury to people.

2.1.3 Other symbols

DANGER: LIVE COMPONENTS
This symbol indicates operations which, if not carried out correctly, lead to electric shocks with lethal consequences.

DANGER: FLAMMABLE MATERIAL
This symbol indicates the presence of flammable materials.

DANGER: BURNING
This symbol indicates the risks of burns due to high temperatures.

DANGER: CRUSHING OF LIMBS
This symbol indicates the presence of moving parts: danger of crushing of limbs.

WARNING: MOVING PARTS
This symbol indicates that you must keep limbs away from moving mechanical parts; danger of crushing.

DANGER: EXPLOSION
This symbol signals places where an explosive atmosphere may be present. An explosive atmosphere is defined as a mixture - under atmospheric conditions - of air and flammable substances in the form of gases, vapours, mist or dust in which, after ignition has occurred, combustion spreads to the entire unburned mixture.

PERSONAL PROTECTION EQUIPMENT
These symbols indicate the equipment that must be worn and kept by the operator for protection against threats against safety and/or health while at work.

OBLIGATION TO ASSEMBLE THE HOOD AND ALL THE SAFETY AND PROTECTION DEVICES
This symbol signals the obligation to reassemble the hood and all the safety and protection devices of the burner after any maintenance, cleaning or checking operations.

ENVIRONMENTAL PROTECTION
This symbol gives indications for the use of the machine with respect for the environment.

IMPORTANT INFORMATION
This symbol indicates important information that you must bear in mind.

Abbreviations used
Ch. Chapter
Fig. Figure
Pag. Page
Sec. Section
Tab. Table
2.1.4 Delivery of the system and the instruction manual

When the system is delivered, it is important that:

► The instruction manual is delivered to the user by the system manufacturer, with the recommendation to keep it in the room where the heat generator is to be installed.

► The instruction manual shows:
 – the serial number of the burner;
 – the address and telephone number of the nearest Assistance Centre

The system supplier must carefully inform the user about:
 – the use of the system;
 – any further tests that may be required before activating the system;
 – maintenance, and the need to have the system checked at least once a year by a representative of the manufacturer or another specialised technician.

To ensure a periodic check, the manufacturer recommends the drawing up of a Maintenance Contract.

2.2 Guarantee and responsibility

The manufacturer guarantees its new products from the date of installation, in accordance with the regulations in force and/or the sales contract. At the moment of the first start-up, check that the burner is integral and complete.

Failure to observe the information given in this manual, operating negligence, incorrect installation and carrying out of non-authorised modifications will result in the annulment by the manufacturer of the guarantee that it supplies with the burner.

In particular, the rights to the guarantee and the responsibility will no longer be valid, in the event of damage to things or injury to people, if such damage/injury was due to any of the following causes:

► incorrect installation, start-up, use and maintenance of the burner;
► improper, incorrect or unreasonable use of the burner;
► intervention of unqualified personnel;
► carrying out of unauthorised modifications on the equipment;
► use of the burner with safety devices that are faulty, incorrectly applied and/or not working;
► installation of untested supplementary components on the burner;
► powering of the burner with unsuitable fuels;
► faults in the fuel supply system;
► continuation of use of the burner when a fault has occurred;
► repairs and/or overhauls incorrectly carried out;
► modification of the combustion chamber with inserts that prevent the regular development of the structurally established flame;
► insufficient and inappropriate surveillance and care of those burner components most likely to be subject to wear and tear;
► use of non-original components, including spare parts, kits, accessories and optional;
► force majeure.

The manufacturer furthermore declines any and every responsibility for the failure to observe the contents of this manual.
3 Safety and prevention

3.1 Introduction

The burners have been designed and built in compliance with current regulations and directives, applying the known technical rules of safety and envisaging all the potential danger situations. It is necessary, however, to bear in mind that the imprudent and clumsy use of the equipment may lead to situations of death risk for the user or third parties, as well as the damaging of the burner or other items. Inattention, thoughtlessness and excessive confidence often cause accidents; the same applies to tiredness and sleepiness.

It is a good idea to remember the following:

- The burner must only be used as expressly described. Any other use should be considered improper and therefore dangerous.
- In particular:
 - it can be applied to boilers operating with water, steam, diathermic oil, and to other uses expressly foreseen by the manufacturer;
 - the type and pressure of the fuel, the voltage and frequency of the electrical power supply, the minimum and maximum deliveries for which the burner has been regulated, the pressurisation of the combustion chamber, the dimensions of the combustion chamber and the room temperature must all be within the values indicated in the instruction manual.
- Modification of the burner to alter its performance and destinations is not allowed.
- The burner must be used in exemplary technical safety conditions. Any disturbances that could compromise safety must be quickly eliminated.
- Opening or tampering with the burner components is not allowed, apart from the parts requiring maintenance.
- Only those parts envisaged by the manufacturer can be replaced.

3.2 Personnel training

The user is the person, body or company that has acquired the machine and intends to use it for the specific purpose. He is responsible for the machine and for the training of the people working around it.

The user:

- undertakes to entrust the machine exclusively to suitably trained and qualified personnel;
- undertakes to inform his personnel in a suitable way about the application and observance of the safety instructions. With that aim, he undertakes to ensure that everyone knows the use and safety instructions for his own duties;
- Personnel must observe all the danger and caution indications shown on the machine.
- Personnel must not carry out, on their own initiative, operations or interventions that are not within their province.
- Personnel must inform their superiors of every problem or dangerous situation that may arise.
- The assembly of parts of other makes, or any modifications, can alter the characteristics of the machine and hence compromise operating safety. The manufacturer therefore declines any and every responsibility for any damage that may be caused by the use of non-original parts.

In addition:

- must take all the measures necessary to prevent unauthorised people gaining access to the machine;
- the user must inform the manufacturer if faults or malfunctioning of the accident prevention systems are noticed, along with any presumed danger situation;
- personnel must always use the personal protective equipment envisaged by legislation and follow the indications given in this manual.
Technical description of the burner

4.1 Burner designation

<table>
<thead>
<tr>
<th>Designation</th>
<th>Voltage</th>
<th>Start-up</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS 150 TC</td>
<td>3/400/50</td>
<td>Direct</td>
<td>20044636</td>
</tr>
<tr>
<td>RS 150 TL</td>
<td>3/400/50</td>
<td>Direct</td>
<td>20044637</td>
</tr>
<tr>
<td>RS 150 TC</td>
<td>3/230/50</td>
<td>Direct</td>
<td>20051309</td>
</tr>
<tr>
<td>RS 150 TL</td>
<td>3/230/50</td>
<td>Direct</td>
<td>20051314</td>
</tr>
</tbody>
</table>

Tab. A

4.2 Models available

<table>
<thead>
<tr>
<th>Designation</th>
<th>Voltage</th>
<th>Start-up</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS 150 TC</td>
<td>3/400/50</td>
<td>Direct</td>
<td>20044636</td>
</tr>
<tr>
<td>RS 150 TL</td>
<td>3/400/50</td>
<td>Direct</td>
<td>20044637</td>
</tr>
<tr>
<td>RS 150 TC</td>
<td>3/230/50</td>
<td>Direct</td>
<td>20051309</td>
</tr>
<tr>
<td>RS 150 TL</td>
<td>3/230/50</td>
<td>Direct</td>
<td>20051314</td>
</tr>
</tbody>
</table>
4.3 Burner categories - Countries of destination

<table>
<thead>
<tr>
<th>Country of destination</th>
<th>Gas category</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE - FI - AT - GR - DK - ES - GB - IT - IE - PT - IS - CH - NO</td>
<td>I_{2H}</td>
</tr>
<tr>
<td>DE</td>
<td>I_{2ELL}</td>
</tr>
<tr>
<td>NL</td>
<td>I_{2L}</td>
</tr>
<tr>
<td>FR</td>
<td>I_{2Er}</td>
</tr>
<tr>
<td>BE</td>
<td>$I_{2E(R)E}$</td>
</tr>
<tr>
<td>LU - PL</td>
<td>I_{2E}</td>
</tr>
</tbody>
</table>

Tab. B

4.4 Technical data

Model	RS 150
Code | 20044636 - 20044637 - 20051309 - 20051314

<table>
<thead>
<tr>
<th>Power (1)</th>
<th>Delivery (1)</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>min - max</td>
<td></td>
<td>300/900 - 1850</td>
</tr>
</tbody>
</table>

Fuels
Natural gas: G20 (methane gas) - G21 - G22 - G23 - G25

Gas pressure at max. output (2)
Gas: G20/G25 | mbar |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23.5 / 32.2</td>
</tr>
</tbody>
</table>

Operation
- Intermittent (min. 1 stop in 24 hours)
- Two-stage (high and low flame) and one-stage (all - nothing)

Standard applications
Boilers: water, steam, diathermic oil

Ambient temperature | °C |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 - 50</td>
</tr>
</tbody>
</table>

Combustion air temperature | °C |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

Auxiliary circuit electrical supply | 1N ~ 230V 50 Hz |

Electrical supply | 3 ~ 400V +/-10% 50 Hz |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 ~ 230V +/-10% 50 Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fan motor</th>
<th>rpm</th>
<th>Hz</th>
<th>V</th>
<th>kW</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2920</td>
<td>50</td>
<td>400</td>
<td>3,0</td>
<td>5,9</td>
</tr>
<tr>
<td></td>
<td>2920</td>
<td>50</td>
<td>230</td>
<td>3,0</td>
<td>10,2</td>
</tr>
</tbody>
</table>

Ignition transformer | V1 - V2 | I1 - I2 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>230 V - 1x8 kV</td>
<td>1A - 20mA</td>
</tr>
</tbody>
</table>

Absorbed electrical power | kW max |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Protection level | IP 44 |

Noise levels (3) | Sound power |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dB(A)</td>
</tr>
<tr>
<td></td>
<td>83,1</td>
</tr>
<tr>
<td></td>
<td>94,1</td>
</tr>
</tbody>
</table>

Weight | kg |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>85</td>
</tr>
</tbody>
</table>

Tab. C

(1) Reference conditions: Room temperature 20°C - Gas temperature 15°C - Barometric pressure 1013 mbar - Altitude 0 m a.s.l.
(2) Pressure at socket 16)(Fig. 5) with zero pressure in combustion chamber and at maximum burner output.
(3) Sound power measured in manufacturer's combustion laboratory, with burner operating on test boiler and at maximum rated output. The sound power is evaluated, in line with the regulations, on a spherical surface centred on the burner and with a radius of 1 metre.
4.5 Maximum dimensions

The maximum dimensions of the burner are given in Fig. 1. Bear in mind that inspection of the combustion head requires the burner to be opened and the rear part drawn back on the slide bars.

![Fig. 1](image1)

The dimensions of the open burner are indicated by position I.

<table>
<thead>
<tr>
<th>mm</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F (1)</th>
<th>G</th>
<th>H</th>
<th>I (1)</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS 150</td>
<td>675</td>
<td>370</td>
<td>305</td>
<td>590</td>
<td>840</td>
<td>280-415</td>
<td>189</td>
<td>435</td>
<td>1180-1315</td>
<td>214</td>
<td>134</td>
<td>221</td>
<td>2"</td>
</tr>
</tbody>
</table>

(1) Blast tube: short-long

4.6 Firing rate

The **maximum output** should be chosen within area A of the diagram (Fig. 2). The **minimum output** must not be lower than the minimum limit of the diagram.

The firing rate value (Fig. 2) has been obtained considering an ambient temperature of 20°C, an atmospheric pressure of 1013 mbar (approx. 0 m above sea level), and with the combustion head adjusted as shown on page 17.

4.6.1 Firing rate based on the air density

It may happen that a burner has to operate with combustion air at a higher temperature and/or higher altitudes.

The heating of the air and the increase in altitude produce the same effect: the expansion of the air volume (i.e. the reduction of its density).

The delivery of the burner fan remains essentially the same, but the oxygen per m³ of air, and the thrust (discharge head) of the fan are reduced.

It is therefore important to know if the maximum output requested from the burner at a determinate combustion chamber pressure remains within the firing rate of the burner even with the changed temperature and altitude conditions.

To check it, proceed as follows:

1. find the corrective factor "F", relating to the air temperature and altitude of the system, in Tab. E
2. divide the output "Q" required from the burner by "F" to obtain the equivalent output "Qe": \[Qe = Q : F\] (kW)
3. in the firing rate of the burner, mark the work point identified by:
 - \[Qe\] = equivalent output
 - \(H1\) = pressure in the combustion chamber
 - **point A** that must remain within the firing rate.

![Fig. 2](image2)

WARNING

The firing rate value (Fig. 2) has been obtained considering an ambient temperature of 20°C, an atmospheric pressure of 1013 mbar (approx. 0 m above sea level), and with the combustion head adjusted as shown on page 17.
4 Trace a vertical line from point A (Fig. 3), and find the maximum pressure “H2” of the firing rate.

5 Multiply “H2” by “F” to obtain the maximum lowered pressure “H3” of the firing rate

\[H3 = H2 \times F \text{ (mbar)} \]

- If “H3” is greater than “H1” (Fig. 3), the burner can supply the required output.
- If “H3” is less than “H1”, it is necessary to reduce the burner output.

The reduction in output is accompanied by a reduction in the combustion chamber pressure:

\[Qr = \text{reduced output} \]
\[H1r = \text{reduced pressure} \]

Example, 5% reduction in output:

\[Qr = Q \times 0.95 \]
\[H1r = H1 \times (0.95)^2 \]

With the new values - Qr and H1r - repeat steps 2 - 5.

WARNING

The combustion head should be adjusted in relation to the equivalent output \(Qe \).

Tab. E

<table>
<thead>
<tr>
<th>Altitude m. above sea level</th>
<th>Average barometric pressure mbar</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1013</td>
<td>1.087</td>
<td>1.068</td>
<td>1.049</td>
<td>1.031</td>
<td>1.013</td>
<td>0.996</td>
<td>0.980</td>
<td>0.948</td>
</tr>
<tr>
<td>100</td>
<td>1000</td>
<td>1.073</td>
<td>1.054</td>
<td>1.035</td>
<td>1.017</td>
<td>1.000</td>
<td>0.983</td>
<td>0.967</td>
<td>0.936</td>
</tr>
<tr>
<td>200</td>
<td>989</td>
<td>1.061</td>
<td>1.042</td>
<td>1.024</td>
<td>1.006</td>
<td>0.989</td>
<td>0.972</td>
<td>0.956</td>
<td>0.926</td>
</tr>
<tr>
<td>300</td>
<td>978</td>
<td>1.050</td>
<td>1.031</td>
<td>1.013</td>
<td>0.995</td>
<td>0.978</td>
<td>0.962</td>
<td>0.946</td>
<td>0.916</td>
</tr>
<tr>
<td>400</td>
<td>966</td>
<td>1.037</td>
<td>1.018</td>
<td>1.000</td>
<td>0.983</td>
<td>0.966</td>
<td>0.950</td>
<td>0.934</td>
<td>0.904</td>
</tr>
<tr>
<td>500</td>
<td>955</td>
<td>1.025</td>
<td>1.007</td>
<td>0.989</td>
<td>0.972</td>
<td>0.955</td>
<td>0.939</td>
<td>0.923</td>
<td>0.894</td>
</tr>
<tr>
<td>600</td>
<td>944</td>
<td>1.013</td>
<td>0.995</td>
<td>0.977</td>
<td>0.960</td>
<td>0.944</td>
<td>0.928</td>
<td>0.913</td>
<td>0.884</td>
</tr>
<tr>
<td>700</td>
<td>932</td>
<td>1.000</td>
<td>0.982</td>
<td>0.965</td>
<td>0.948</td>
<td>0.932</td>
<td>0.916</td>
<td>0.901</td>
<td>0.872</td>
</tr>
<tr>
<td>800</td>
<td>921</td>
<td>0.988</td>
<td>0.971</td>
<td>0.954</td>
<td>0.937</td>
<td>0.921</td>
<td>0.906</td>
<td>0.891</td>
<td>0.862</td>
</tr>
<tr>
<td>900</td>
<td>910</td>
<td>0.977</td>
<td>0.959</td>
<td>0.942</td>
<td>0.926</td>
<td>0.910</td>
<td>0.895</td>
<td>0.880</td>
<td>0.852</td>
</tr>
<tr>
<td>1000</td>
<td>898</td>
<td>0.964</td>
<td>0.946</td>
<td>0.930</td>
<td>0.914</td>
<td>0.898</td>
<td>0.883</td>
<td>0.868</td>
<td>0.841</td>
</tr>
<tr>
<td>1200</td>
<td>878</td>
<td>0.942</td>
<td>0.925</td>
<td>0.909</td>
<td>0.893</td>
<td>0.878</td>
<td>0.863</td>
<td>0.849</td>
<td>0.822</td>
</tr>
<tr>
<td>1400</td>
<td>856</td>
<td>0.919</td>
<td>0.902</td>
<td>0.886</td>
<td>0.871</td>
<td>0.856</td>
<td>0.842</td>
<td>0.828</td>
<td>0.801</td>
</tr>
<tr>
<td>1600</td>
<td>836</td>
<td>0.897</td>
<td>0.881</td>
<td>0.866</td>
<td>0.851</td>
<td>0.836</td>
<td>0.822</td>
<td>0.808</td>
<td>0.783</td>
</tr>
<tr>
<td>1800</td>
<td>815</td>
<td>0.875</td>
<td>0.859</td>
<td>0.844</td>
<td>0.829</td>
<td>0.815</td>
<td>0.801</td>
<td>0.788</td>
<td>0.763</td>
</tr>
<tr>
<td>2000</td>
<td>794</td>
<td>0.852</td>
<td>0.837</td>
<td>0.822</td>
<td>0.808</td>
<td>0.794</td>
<td>0.781</td>
<td>0.768</td>
<td>0.743</td>
</tr>
<tr>
<td>2400</td>
<td>755</td>
<td>0.810</td>
<td>0.796</td>
<td>0.782</td>
<td>0.768</td>
<td>0.755</td>
<td>0.742</td>
<td>0.730</td>
<td>0.707</td>
</tr>
<tr>
<td>2800</td>
<td>714</td>
<td>0.766</td>
<td>0.753</td>
<td>0.739</td>
<td>0.726</td>
<td>0.714</td>
<td>0.702</td>
<td>0.690</td>
<td>0.668</td>
</tr>
<tr>
<td>3200</td>
<td>675</td>
<td>0.724</td>
<td>0.711</td>
<td>0.699</td>
<td>0.687</td>
<td>0.675</td>
<td>0.664</td>
<td>0.653</td>
<td>0.632</td>
</tr>
<tr>
<td>3600</td>
<td>635</td>
<td>0.682</td>
<td>0.669</td>
<td>0.657</td>
<td>0.646</td>
<td>0.635</td>
<td>0.624</td>
<td>0.614</td>
<td>0.594</td>
</tr>
<tr>
<td>4000</td>
<td>616</td>
<td>0.661</td>
<td>0.649</td>
<td>0.638</td>
<td>0.627</td>
<td>0.616</td>
<td>0.606</td>
<td>0.596</td>
<td>0.577</td>
</tr>
</tbody>
</table>

4.7 Test boiler

The burner/boiler combination does not pose any problems if the boiler is EC approved and its combustion chamber dimensions are similar to those indicated in the diagram (Fig. 4).

If the burner must be combined with a boiler that has not been EC approved and/or its combustion chamber dimensions are clearly smaller than those indicated in the diagram, consult the manufacturer.

The firing rates were established in special test boilers, according to EN 676 regulations.

In Fig. 4 you can see the diameter and length of the test combustion chamber.

Example:

Output 756 kW - diameter 60cm - length 2m.
4.8 Burner description

1. Combustion head
2. Ignition electrode
3. Screw for combustion head adjustment
4. Pipe coupling
5. Servomotor controlling the gas butterfly valve and the air damper valve (by means of an adjustable profile cam mechanism).
 When the burner is not operating the air gate valve is fully closed in order to reduce heat dispersion from the boiler due to the flue draught which draws air from the fan suction inlet.
6. Plug-socket on ionisation probe cable
7. Extensions for slide bars 15)
8. Motor contact maker and thermal relay with reset button
9. Two switches:
 - one for “burner operation / stop”
 - one for “1st - 2nd stage”
10. Terminal board for electrical wiring
11. Cable grommets for electrical wiring (to be carried out by the installer)
12. Control box with lockout pilot light and lockout reset button
13. Flame inspection window
14. Minimum air pressure switch (differential operating type)
15. Slide bars for opening the burner and inspecting the combustion head
16. Gas pressure test point and head fixing screw
17. Air pressure test point
18. Flame sensor probe
19. Air damper
20. Fan air inlet
21. Screws to secure fan to pipe coupling
22. Gas input pipe
23. Gas butterfly valve
24. Boiler fixing flange
25. Flame stability disk
26. Ignition transformer
27. Suppressor
28. “K1” relay
29. Fan motor

4.9 Burner equipment

The burner is supplied complete with:

- Flange for gas train ... No. 1
- Gasket for flange ... No. 1
- Screws (M8x25) to fix the flange No. 4
- Thermal insulation screen No. 1
- Extensions 7) for guides 15): TL versions only. No. 2
- Screw (M12x35) to fix the burner flange to the boiler. No. 1
- Instruction Manual ... No. 1
- Spare Parts List ... No. 1
4.10 Control box (RMG88.62C2)

Warnings

To avoid accidents, material or environmental damage, observe the following instructions!

The control box is a safety device! Avoid opening or modifying it, or forcing its operation. Riello S.p.A. cannot assume any responsibility for damage resulting from unauthorised interventions!

➢ All interventions (assembly and installation operations, assistance, etc.) must be carried out by qualified personnel.
➢ Before modifying the wiring in the control box connection area, fully disconnect the system from the power supply (omnipolar separation).
➢ Protection against electrocution from the control box and all connected electric components is obtained with the correct assembly.
➢ Before any intervention (assembly and installation operations, assistance, etc.), ensure the wiring is in order and that the parameters are correctly set, then make the safety checks.
➢ Falls and collisions can negatively affect the safety functions. In this case, the control box must not be operated, even if it displays no evident damage.

For safety and reliability, comply with the following instructions:

➢ Avoid conditions that can favour the development of condensate and humidity. Otherwise, before switching on again, make sure the control box is perfectly dry.
➢ Static charges must be avoided since they can damage the control box’s electronic components when touched.

Use

The control box is a control and supervision system of medium and large capacity forced draught burners, for intermittent operation (at least one controlled shutdown every 24 hours).

Installation notes

• Check the electric wiring inside the boiler complies with the national and local safety regulations.
• Install switches, fuses, earth connection etc. in compliance with local regulations.
• Do not confuse the powered conductors with the neutral ones.
• Ensure that spliced wires cannot get into contact with neighbouring terminals. Use adequate ferrules.
• Arrange the H.V. ignition cables separately, as far as possible from the control box and the other cables.
• When wiring the unit, make sure the 230V AC mains voltage cables are run strictly separate from extra low-voltage cables, to avoid the risk of electrocution.

Electrical wiring of the flame detector

It is important for signal transmission to be almost totally free of any disturbances or loss:

• Always separate the detector cables from the other cables:
 – the line capacity reduces the magnitude of the flame signal;
 – use a separate cable.
• The cable length must not exceed 1m.
• Respect the polarity
• Insulation resistance:
 – must be at least 50MΩ between the ionisation probe and the earth;
 – a dirty detector reduces the insulation resistance, fostering leakage currents.
• The ionisation probe is not protected against the risk of electrocution. When connected to the electricity supply, the ionisation probe must be protected against any accidental contact.
• Position the ionisation probe so that the ignition spark cannot form an arc on the probe (risk of electric overcharge).

Technical data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mains voltage</td>
<td>AC 230V -15% / +10%</td>
</tr>
<tr>
<td>Mains frequency</td>
<td>50/60 Hz ±6%</td>
</tr>
<tr>
<td>Built-in fuse</td>
<td>T6.3H 250V</td>
</tr>
<tr>
<td>Energy consumption</td>
<td>20 VA</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 260g</td>
</tr>
<tr>
<td>Protection level</td>
<td>IP20</td>
</tr>
<tr>
<td>Safety class</td>
<td>I</td>
</tr>
<tr>
<td>Tightening torque of M4 screw</td>
<td>Max. 0.8 Nm</td>
</tr>
<tr>
<td>Allowed cable length</td>
<td></td>
</tr>
<tr>
<td>Thermostat</td>
<td>max. 20m at 100 pF/m</td>
</tr>
<tr>
<td>Air pressure switch</td>
<td>max. 1m at 100 pF/m</td>
</tr>
<tr>
<td>CPI</td>
<td>max. 1m at 100 pF/m</td>
</tr>
<tr>
<td>Gas pressure switch</td>
<td>max. 20m at 100 pF/m</td>
</tr>
<tr>
<td>Flame detector</td>
<td>max. 1m</td>
</tr>
<tr>
<td>Remote reset</td>
<td>max. 20m at 100 pF/m</td>
</tr>
<tr>
<td>Environmental conditions</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>DIN EN 60721-3-1</td>
</tr>
<tr>
<td>Climatic conditions</td>
<td>Class 1K3</td>
</tr>
<tr>
<td>Mechanical conditions</td>
<td>Class 1M2</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-20...+60°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>< 95% RH</td>
</tr>
</tbody>
</table>

Tab. F
4.11 Servomotor (SQN31.22...)

Warnings

To avoid accidents, material or environmental damage, observe the following instructions!

Avoid opening, modifying or forcing the actuators.

- All interventions (assembly and installation operations, assistance, etc.) must be carried out by qualified personnel.
- Before modifying the wiring in the connection area of the servomotor, fully disconnect the burner control device from the power supply (omnipolar separation).
- To avoid the risk of electrocution, protect the connection terminals in a suitable manner and correctly fix the cover.
- Check the wiring is in order.
- Falls and collisions can negatively affect the safety functions. In this case, the servomotor must not be operated, even if it displays no evident damage.

The servomotor contains electric and electronic components that must not be disposed of with normal domestic waste.

Respect all current local legislation.

Assembly notes

- Check the relevant national safety standards are respected.
- When assembling the servomotor and connecting the damper, the gears can be disengaged by means of a lever, allowing the drive shaft to be easily adjusted in both directions of rotation.

Technical data

<table>
<thead>
<tr>
<th>Operating voltage</th>
<th>AC 220 V -15 %...AC 240 V +10 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AC 100 V -15 %...AC 110 V +10 %</td>
</tr>
<tr>
<td>Mains frequency</td>
<td>50/60 Hz ±6%</td>
</tr>
<tr>
<td>Energy consumption</td>
<td>6.5 VA</td>
</tr>
<tr>
<td>Angular positioning</td>
<td>up to 160° (base scale)</td>
</tr>
<tr>
<td>Assembly position</td>
<td>optional</td>
</tr>
<tr>
<td>Protection level</td>
<td>IP 40, in accordance with DIN 40050</td>
</tr>
<tr>
<td>Switching voltage</td>
<td>24...250V AC</td>
</tr>
<tr>
<td>Type of motor</td>
<td>synchronous</td>
</tr>
</tbody>
</table>

Environmental conditions

Storage	DIN EN 60 721-3-3
Climatic conditions	Class 3K5
Mechanical conditions	Class 3M2
Temperature range	-20...+70°C
Humidity	< 95% RH

Tab. G
5 Installation

5.1 Notes on safety for the installation

After carefully cleaning all around the area where the burner will be installed, and arranging the correct lighting of the environment, proceed with the installation operations.

All the installation, maintenance and disassembly operations must be carried out with the electricity supply disconnected.

The installation of the burner must be carried out by qualified personnel, as indicated in this manual and in compliance with the standards and regulations of the laws in force.

Combustion air inside the boiler must be free from hazardous mixes (e.g.: chloride, fluoride, halogen); if present, it is highly recommended to carry out cleaning and maintenance more frequently.

5.2 Handling

The burner packaging includes a wooden platform, it is therefore possible to move the burner (still packaged) with a transpallet truck or fork lift truck.

The handling operations for the burner can be highly dangerous if not carried out with the greatest attention: keep any unauthorised people at a distance; check the integrity and suitableness of the available means of handling.

Check also that the area in which you are working is empty and that there is an adequate escape area (i.e. a free, safe area to which you can quickly move if the burner should fall).

When handling, keep the load at not more than 20-25cm from the ground.

After positioning the burner near the installation point, correctly dispose of all residual packaging, separating the various types of material.

Before proceeding with the installation operations, carefully clean all around the area where the burner will be installed.

5.3 Preliminary checks

Checking the consignment

After removing all the packaging, check the integrity of the contents. In the event of doubt, do not use the burner; contact the supplier.

The packaging elements (wooden cage or cardboard box, nails, clips, plastic bags, etc.) must not be abandoned as they are potential sources of danger and pollution; they should be collected and disposed of in the appropriate places.

Checking the characteristics of the burner

Check the identification label of the burner (Fig. 8), showing:

A the burner model
B the burner type
C the cryptographic year of manufacture
D the serial number
E the data for electrical supply and the protection level
F the electrical power consumption
G the types of gas used and the relative supply pressures
H the data of the burner's minimum and maximum output possibilities (see Firing rate)

Warning. The burner output must be within the boiler's firing rate;

I the category of the appliance/countries of destination.

A burner label, or any other component, that has been tampered with, removed or is missing, prevents the definite identification of the burner and makes any installation or maintenance work difficult.
5.4 Operating position

- The burner is designed to operate only in positions 1, 2, 3 and 4 (Fig. 9).
- Installation 1 is preferable, as it is the only one that allows the maintenance operations as described in this manual.
- Installations 2, 3 and 4 permit operation but make maintenance and inspection of the combustion head more difficult.

- Any other position could compromise the correct operation of the appliance.
- Installation 5 is prohibited for safety reasons.

5.5 Preparing the boiler

5.5.1 Boring the boiler plate

Pierce the closing plate of the combustion chamber, as in Fig. 10. The position of the threaded holes can be marked using the thermal insulation screen supplied with the burner.

5.5.2 Blast tube length

The length of the blast tube 12(Fig. 11) must be selected according to the indications provided by the boiler manufacturer, and in any case must be greater than the thickness of the boiler door complete with its refractory.

The available lengths are the ones indicated in Tab. H.

<table>
<thead>
<tr>
<th>Blast tube</th>
<th>Short</th>
<th>Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS 150</td>
<td>280mm</td>
<td>415mm</td>
</tr>
</tbody>
</table>

Tab. H

For boilers with a front flue gas passes 15)(Fig. 11) or flame inversion chamber, a protection device in refractory material 13) must be inserted between the boiler fettling 14) and the blast tube 12).

This protective fettling must not compromise the extraction of the blast tube.

For boilers with a water-cooled frontal, a refractory lining 13)-14) is not necessary unless expressly requested by the boiler manufacturer.

WARNING

The burner is designed to operate only in positions 1, 2, 3 and 4 (Fig. 9).

Installation 1 is preferable, as it is the only one that allows the maintenance operations as described in this manual.

Installations 2, 3 and 4 permit operation but make maintenance and inspection of the combustion head more difficult.

WARNING

Any other position could compromise the correct operation of the appliance.

Installation 5 is prohibited for safety reasons.
5.6 Securing the burner to the boiler

Provide an adequate lifting system.

Separate the combustion head from the rest of the burner, as shown in Fig. 11.

To do this, proceed as follows:

- loosen the four screws 3) and remove the hood 1);
- disengage the articulated coupling 7) from the graduated sector 8);
- remove screws 2) from the two slide bars 5);
- remove the 2) screws 4) and pull the burner back on slide bars 5) by about 100mm;
- disconnect the probe and electrode cables, then slide off the burner completely from the slide bars.

WARNING

Before fixing the burner to the boiler, check (through the opening of the blast tube) that the probe and electrode are correctly positioned (see Fig. 13).

If the probe or electrode is not correctly positioned, you must:

- remove the screw 1)(Fig. 12);
- take out the inner part 2)(Fig. 12) of the head, and then calibrate them.

Once this operation (if necessary) has been carried out, fix the flange 11)(Fig. 11) to the boiler plate, interposing the insulating gasket 9)(Fig. 11) supplied.

Use the 4 screws supplied, with a tightening torque of 35 - 40 Nm, after protecting their thread with anti-seizing products.

The seal between burner and boiler must be airtight: after the start-up, check there is no leakage of flue gases into the external environment.
5.7 Positioning the probe - electrode

When positioning the probe and electrode, respect the dimensions shown in Fig. 13.

Do not rotate the probe: leave it as in Fig. 13 since if it is located too close to the ignition electrode, the control box amplifier may be damaged.

5.8 Combustion head adjustment

At this point of the installation, the combustion head is fixed to the boiler as shown in Fig. 12.

It is therefore especially easy to adjust, and this adjustment depends only on the maximum output of the burner.

You can adjust the air and gas to calibrate the combustion head.

In the diagram of Fig. 14, find the notch at which both air and central gas/air should be adjusted.

The diagrams show an optimum adjustment for a type of boiler according to (Fig. 4, page 10).

5.8.1 Air adjustment

Proceed as follows:

- rotate the screw 2)(Fig. 15) until the notch you have found corresponds with the front surface 1) of the flange.

To facilitate the adjustment, loosen the screw 3)(Fig. 15); adjust, then lock in place.

5.8.2 Gas adjustment

Proceed as follows:

- loosen the screws 4) and rotate the ring nut 5)(Fig. 15) until the notch you have found corresponds with the indicator 3);
- block the screws 4).

Example:

burner output = 1300 kW and combustion chamber pressure equal to 0 mbar.

The diagram (Fig. 14) shows that the gas and air adjustments for this output are carried out on notch 4.

The adjustments indicated can be modified during the initial start-up.

If the pressure in the combustion chamber is 0 mbar, the adjustments are made with reference to the dotted line.
Installation

Once the combustion head adjustment is completed:

- reassemble the burner on the guides 3), about 100mm from the pipe coupling 4) - burner in the position shown in Fig. 11;
- insert the probe and electrode cables, then slide the burner as far as the pipe coupling - burner in the position shown in Fig. 16;
- refit the screws 2) on the slide bars 3);
- fix the burner to the pipe coupling with the screws 1).
- reconnect the articulated coupling 7) to the graduated sector 6).

When fitting the burner on the two slide bars, it is advisable to gently draw out the high voltage cable and the flame detection probe cable until they are slightly stretched.

Carry out all the operations described above, then reassemble the hood and all the burner safety and protection devices.

Fig. 16
5.9 Gas feeding

Explosion danger due to fuel leaks in the presence of a flammable source.
Precautions: avoid knocking, attrition, sparks and heat.
Make sure the fuel interception tap is closed before performing any operation on the burner.
The fuel supply line must be installed by qualified personnel, in compliance with current standards and laws.

5.9.1 Gas feeding line
Key (Fig. 17 - Fig. 18 - Fig. 19 - Fig. 20)
1 Gas input pipe
2 Manual valve
3 Vibration damping joint
4 Pressure gauge with pushbutton cock
5 Filter
6A Includes:
 - filter
 - working valve
 - safety valve
 - pressure adjuster
6B Includes:
 - working valve
 - safety valve
 - pressure adjuster
6C Includes:
 - safety valve
 - working valve
6D Includes:
 - safety valve
 - working valve
 - pressure adjuster
 - filter
7 Minimum gas pressure switch
8 Leak detection control, provided as an accessory or integrated, based on the gas train code. In compliance with the EN 676 standard, the leak detection control is compulsory for burners with maximum outputs over 1200 kW.
9 Gasket, for "flanged" versions only
10 Pressure adjuster
11 Train-Burner adaptor, supplied separately
P2 Upline pressure of valves/adjuster
P3 Upstream pressure of the filter
L Gas train, supplied separately
L1 The responsibility of the installer
5.9.2 Gas train
Approved according to standard EN 676 and provided separately from the burner.
To select the correct gas train model, refer to the supplied “Burner-gas train combination” manual.

5.9.3 Gas train installation

DANGER
Disconnect the electrical power using the main switch.

Check that there are no gas leaks.

Pay attention when handling the train: danger of crushing of limbs.

Make sure that the gas train is properly installed by checking for any fuel leaks.

The operator must use the required equipment during installation.

The gas train can be connected to the right or left side of the burner, as the situation requires (see Fig. 21).
The gas train must be connected to the gas connection 1)(Fig. 21) using the flange 2), gasket 3) and screws 4) supplied with the burner.

The gas solenoids must be as close as possible to the burner to ensure that the gas reaches the combustion head within the safety time of 3s.

Make sure the maximum pressure necessary for the burner is included in the calibration field of the pressure adjuster (colour of the spring).

See the accompanying instructions for the adjustment of the gas train.

WARNING

5.9.4 Gas pressure
Tab. J indicates the pressure drop of the combustion head and the gas butterfly valve depending on the operating output of the burner.

<table>
<thead>
<tr>
<th>kW</th>
<th>1 Δp (mbar)</th>
<th>2 Δp (mbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>G 20</td>
<td>G 25</td>
</tr>
<tr>
<td>1000</td>
<td>4.5</td>
<td>6.9</td>
</tr>
<tr>
<td>1100</td>
<td>5.5</td>
<td>8.6</td>
</tr>
<tr>
<td>1200</td>
<td>6.6</td>
<td>10.2</td>
</tr>
<tr>
<td>1300</td>
<td>7.7</td>
<td>11.8</td>
</tr>
<tr>
<td>1400</td>
<td>8.7</td>
<td>13.5</td>
</tr>
<tr>
<td>1500</td>
<td>9.9</td>
<td>15.2</td>
</tr>
<tr>
<td>1600</td>
<td>11.1</td>
<td>17.1</td>
</tr>
<tr>
<td>1700</td>
<td>12.5</td>
<td>19.4</td>
</tr>
<tr>
<td>1800</td>
<td>14.2</td>
<td>22.0</td>
</tr>
<tr>
<td>1850</td>
<td>16.3</td>
<td>25.3</td>
</tr>
</tbody>
</table>

The values shown in Tab. J refer to:
- natural gas G20 NCV 9.45 kWh/Sm3 (8.2 Mcal/Sm3)
- natural gas G25 NCV 8.13 kWh/Sm3 (7.0 Mcal/Sm3)

Column 1
Combustion head pressure drop.
Gas pressure measured at test point 1)(Fig. 22), with:
- combustion chamber at 0 mbar;
- burner working at maximum modulating output;
- combustion head set as on page 17.

Column 2
Pressure loss at gas butterfly valve 2)(Fig. 22) with maximum opening: 90°.

To calculate the approximate output at which the burner operates:
- subtract the combustion chamber pressure from the gas pressure measured at test point 1)(Fig. 22).
- Find, in Tab. J related to the burner concerned, the pressure value closest to the result of the subtraction.
- Read off the corresponding output on the left.
Example with natural gas G20:
Operation at maximum modulating output
Gas pressure at test point 1)(Fig. 22) = 11.7 mbar
Pressure in combustion chamber = 3 mbar
11.7 - 3 = 8.7 mbar

A pressure of 8.7 mbar (column 1) corresponds in Tab. J to an output of 1300 kW.
This value serves as a rough guide; the effective output must be measured at the gas meter.

To calculate the required gas pressure at test point 1)(Fig. 22), set the maximum modulating output required from the burner operation:
– find the nearest output value in Tab. J for the burner in question.
– read, on the right (column 1), the pressure at the test point 1) (Fig. 22).
– Add this value to the estimated pressure in the combustion chamber.

Example with natural gas G20:
Operation at maximum modulating output
Gas pressure at an output of 1300 kW = 8.7 mbar
Pressure in combustion chamber = 3 mbar
8.7 + 3 = 11.7 mbar
pressure required at test point 1)(Fig. 22).
5.10 Electrical wiring

Notes on safety for the electrical wiring

- The electrical wiring must be carried out with the electrical supply disconnected.
- Electrical wiring must be made in accordance with the regulations currently in force in the country of destination and by qualified personnel. Refer to the wiring diagrams.
- The manufacturer declines all responsibility for modifications or connections different from those shown in the wiring diagrams.
- Check that the electrical supply of the burner corresponds to that shown on the identification label and in this manual.
- The burner has been type-approved for intermittent use. This means they should compulsorily be stopped at least once every 24 hours to enable the control box to perform checks of its own start-up efficiency. Normally, burner stopping is guaranteed by the boiler's thermostat/pressure switch.
- If this is not the case, a time switch should be fitted in series to TL to stop the burner at least once every 24 hours. Refer to the wiring diagrams.
- The electrical safety of the device is obtained only when it is correctly connected to an efficient earthing system, made according to current standards. It is necessary to check this fundamental safety requirement. In the event of doubt, have the electrical system checked by qualified personnel. Do not use the gas tubes as an earthing system for electrical devices.
- The electrical system must be suitable for the maximum power absorption of the device, as indicated on the label and in the manual, checking in particular that the section of the cables is suitable for that level of power absorption.
- For the main power supply of the device from the electricity mains:
 - do not use adapters, multiple sockets or extensions;
 - use a multiple pole switch with at least a 3mm gap between the contacts (overvoltage category III), as envisaged by the present safety standards.
- Do not touch the device with wet or damp body parts and/or in bare feet.
- Do not pull the electric cables.

Before carrying out any maintenance, cleaning or checking operations:

- Disconnect the electrical supply from the burner by means of the main system switch.
- Turn off the fuel interception tap.
- Avoid condensate, ice and water leaks from forming.

If the cover is still present, remove it and proceed with the electrical wiring according to the wiring diagrams.

Use flexible cables in compliance with the EN 60 335-1 standard.

5.10.1 Supply cables and external connections passage

All the cables to be connected to the burner should be passed through cable grommets, as shown in Fig. 23.

Key (Fig. 23)
1. Pg 13,5 - Three-phase power supply
2. Pg 11 - Single-phase power supply
3. Pg 11 - TL remote control
4. Pg 9 - TR remote control
5. Pg 13,5 Gas valves
6. Pg 13,5 - Gas pressure switch or valve leak detection device
7. Pg 11 - Bore, if you want to add a cable entry

After carrying out maintenance, cleaning or checking operations, reassemble the hood and all the safety and protection devices of the burner.
5.11 Calibration of the thermal relay

The thermal relay serves to avoid damage to the motor due to an excessive absorption increase or if a phase is missing. For the calibration, refer to Tab. K.

<table>
<thead>
<tr>
<th>Model</th>
<th>Thermal relay adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS 150</td>
<td>230V 10.5 A</td>
</tr>
<tr>
<td>RS 150</td>
<td>400V 6.3 A</td>
</tr>
</tbody>
</table>

Tab. K

The protection is in any case ensured even if the minimum value of the thermal relay scale is over the rating absorption of the motor. This occurs when the motor power supply is 400 V.

To reset, in case of an intervention of the thermal relay, press button 1)(Fig. 24).

The automatic reset can be dangerous.
This operation is not foreseen in the burner operation.

5.12 Measuring the ionisation current

The burner is fitted with an ionisation system to check that a flame is present. The minimum current for control box operation is 6 µA.

The burner provides a much higher current, so controls are not normally required.

If it is necessary, however, to measure the ionisation current, disconnect the plug-socket 2)(Fig. 25) on the ionisation probe cable and insert a direct current microammeter 1)(Fig. 25) with a base scale of 100 µA.

Carefully check the polarities!
6 Start-up, calibration and operation of the burner

6.1 Notes on safety for the first start-up

The first start-up of the burner must be carried out by qualified personnel, as indicated in this manual and in compliance with the standards and regulations of the laws in force.

Check the correct working of the adjustment, command and safety devices.

6.2 Adjustments prior to ignition

Ensure that the gas supply company has carried out the supply line vent operations, eliminating air or inert gases from the piping.

An excessive gas pressure can damage the components of the gas train and lead to a risk of explosion.

➢ Slowly open the manual valves situated upstream from the gas train.
➢ Adjust the minimum gas pressure switch (Fig. 33) to the start of the scale.
➢ Adjust the air pressure switch (Fig. 32) to the start of the scale.
➢ Check the gas supply pressure by connecting a pressure gauge to the pressure test point 1) (Fig. 26) of the minimum gas pressure switch: it must be lower than the maximum allowed pressure of the gas train, as shown on the characteristics label.

➢ Bleed the air from the piping of the gas train, connecting a plastic tube to the pressure test point 1) (Fig. 26) of the minimum gas pressure switch. Take the vent tube outside the building so you can notice the smell of gas.
➢ Connect two lamps or testers to the two gas line solenoids to check the exact moment in which voltage is supplied. This operation is unnecessary if each of the two solenoids is equipped with a pilot light that signals voltage passing through.

Before starting up the burner, it is good practice to adjust the gas train so that ignition takes place in conditions of maximum safety, i.e. with gas delivery at the minimum.
6.3 Burner start-up

Feed electricity to the burner via the disconnecting switch on the boiler panel. Close the remote controls and turn:
- switch 1)(Fig. 27) to the “Burner ON” position;
- switch 2)(Fig. 27) to the “1st stage” position.

As soon as the burner starts up:
- check the fan rotation direction through the flame inspection window 13)(Fig. 5, page 11).
- check the fan motor rotation direction, as shown in Fig. 28.

Make sure that the lights or testers connected to the solenoids, or the pilot lights on the solenoids themselves, indicate that no voltage is present. If voltage is present, stop the burner immediately and check the electrical wiring.

6.4 Burner ignition

Having completed the checks indicated in the previous heading, ignition of the burner should be achieved. If the motor starts but the flame does not appear and the control box goes into lockout, reset and wait for a new start-up attempt. If ignition is still not achieved, it may be that gas is not reaching the combustion head within the safety time period of 3 seconds. In this case, increase gas ignition delivery.

6.5 Servomotor adjustment

The servomotor (Fig. 29) simultaneously adjusts the air damper (by means of the variable profile cam) and the gas butterfly valve. The servomotor rotates by 130° in 15 seconds.

Do not alter the factory setting for the 5 cams; check only that they are as shown below.

Cam I: 130°
Limits rotation toward maximum position. When the burner is at MAX output, the gas butterfly valve must be fully open: 90°.

Cam II: 0°
Limits rotation toward minimum position. When the burner is shut down, the air damper and gas butterfly valve must be closed: 0°.

Cam III: 15°
Adjusts the firing and output position in 1st stage.

Cam V: Not used.

WARNING
As soon as the burner starts up:
- check the fan rotation direction through the flame inspection window 13)(Fig. 5, page 11).
- check the fan motor rotation direction, as shown in Fig. 28.

DANGER
Make sure that the lights or testers connected to the solenoids, or the pilot lights on the solenoids themselves, indicate that no voltage is present. If voltage is present, stop the burner immediately and check the electrical wiring.

The arrival of gas to the pipe coupling is shown by the pressure gauge. Once the burner has fired, now proceed with global calibration operations.
6.6 Adjusting the burner

The optimum adjustment of the burner requires an analysis of flue gases at the boiler outlet.

Adjust in sequence:
- ignition output
- output in 2nd stage
- output in 1st stage
- intermediate outputs
- air pressure switch
- minimum gas pressure switch

6.6.1 Output upon ignition

Burners with MAX output up to 120 kW

Ignition can occur at the maximum operation output level. Example:
- max. operation output: 120 kW
- max. ignition output: 120 kW

Burners with MAX output above 120 kW

Ignition must occur at a lower output than the max. operation output.

If ignition output does not exceed 120 kW, no calculations are required.

If ignition output exceeds 120 kW, the regulatory standard sets that the value be defined according to the control box safety time "ts": for "ts" = 3s, ignition output must be equal to or less than 1/3 of the max. operation output.

Example:
MAX operation output of 450 kW.

The ignition output must be equal to or less than 150 kW with ts = 3s.

In order to measure the ignition output:
- disconnect the plug-socket 6) on the ionisation probe cable (the burner will fire and then go into lockout after the safety time has elapsed);
- perform 10 consecutive ignitions with lockouts;
- on the meter, read the quantity of gas burned:
 this quantity must be equal to, or lower than, the quantity given by the formula, for ts = 3s:

\[
V_g = \frac{Q_a \times n \times ts}{3600}
\]

\[
V_g = \frac{15.87 \times 10 \times 3}{3600} = 0.132 \text{ Sm}^3
\]

6.6.2 Output in 2nd stage

MAX output must be selected within the firing rate range shown on page 9.

In the above description, we left the burner running, operating in 1st stage.

Now turn switch 2) (Fig. 27) to the 2nd stage position: the servomotor will open the air damper and, at the same time, the gas butterfly valve at 90°.

Adjustment of gas delivery

Measure the gas delivery on the gas meter.

A rough indication can be obtained from (Tab. E, page 10); just read the gas pressure on the pressure gauge (see (Fig. 32, page 28)) and follow the indications given on page 9.

- If delivery needs to be reduced, diminish outlet gas pressure; if it is already very low, slightly close the VR adjustment valve.
- If delivery needs to be increased, increase the adjuster outlet gas pressure.

Air adjustment

Progressively adjust the end profile of cam 4) (Fig. 30) by turning the screws 7).
- Turn the screws clockwise to increase air delivery
- Turn the screws anticlockwise to reduce air delivery

![Fig. 30](image-url)
6.6.3 Output in 1st stage
Min output must be selected within the firing rate range shown on page 9.

Turn switch 2)(Fig. 27, page 25) to the 1st stage position: the servovmotor 1) will close the air damper and, at the same time, will also close the gas butterfly valve to 15° (i.e. to the factory setting).

Adjustment of gas delivery
Measure the gas delivery on the gas meter.
– If it is necessary to reduce it, slightly reduce the angle of cam III of the servomotor with small, regular movements (i.e. bring it from an angle of 15° to 13° - 11°....).
– If it is necessary to increase it, pass to 2nd stage by activating switch 2)(Fig. 27, page 25) and slightly increase the angle of the orange lever with small, regular movements (i.e. bring it from an angle of 15° to 17° - 19°....).

Now return to the 1st stage and measure the gas output.

NOTE
The servomotor only follows the adjustment of the orange lever when the angle of the cam is reduced.

If the angle needs to be increased, pass to the 2nd stage and increase the angle, then return to the 1st stage to check the effect of the adjustment.

For any necessary adjustment of cam III, especially for small movements, use the specific key 10)(Fig. 31) held in place beneath the servomotor with the aid of a magnet.

Air adjustment
Progressively adjust the initial profile of the cam 4)(Fig. 30, page 26) by turning the screws 5).

It is preferable not to turn the first screw, as this one is used to bring the air damper to its fully closed position.

6.6.4 Intermediate outputs

Adjustment of gas delivery
No adjustment of gas delivery is required.

Air adjustment
Switch off the burner by means of the switch 1)(Fig. 27, page 25);
release the cam 4)(Fig. 30, page 26) from the servomotor by pressing (and moving to the right) the release button on the servomotor;
Manually rotate the cam 4) backwards and forwards several times to make sure it moves smoothly.
Now engage the cam 4) with the servomotor again, by shifting the release button to the left.
As far as possible, try not to move the screws (previously adjusted to open the air damper in 1st and 2nd stage) at the ends of the cam.

Once optimum adjustment has been reached, fix it with the screws 6)(Fig. 30, page 26).

NOTE
Once you have finished adjusting the "2nd stage - 1st stage - intermediate" outputs, check ignition once again: noise emission at this stage must be identical to the following stage of operation. If you notice any sign of pulsations, reduce the ignition output.
6.6.5 Air pressure switch

Adjust the air pressure switch after performing all other burner adjustments with the air pressure switch set to the start of the scale (Fig. 32).

- With the burner operating in 1st stage, insert a combustion analyser in the flue and slowly close the suction inlet of the fan (e.g. with a piece of cardboard) until the CO value exceeds 100 ppm.
- Slowly turn the appropriate knob clockwise until the burner goes into lockout.
- Check the indication of the arrow pointing upwards on the graduated scale.
- Turn the knob clockwise again, until the value shown on the graduated scale corresponds with the arrow pointing downwards, and so recovering the hysteresis of the pressure switch (shown by the white mark on a blue background, between the two arrows).
- Now check the correct start-up of the burner.
- If the burner locks out again, turn the knob anticlockwise a little bit more.

During these operations it may be useful to measure the air pressure with a pressure gauge.

The connection of the pressure gauge is shown in Fig. 32. The standard configuration is that with the air pressure switch connected in absolute mode. Note the presence of a “T” connection, not supplied.

In certain applications in strong depression situations, the connection of the pressure switch does not allow it to change over. In this case it is necessary to connect the pressure switch in differential mode, applying a second tube between the air pressure switch and the fan suction line mouth.

![Connecting the pressure gauge with the pressure switch in absolute mode](image1)

The use of the air pressure switch with differential operation is only allowed in industrial applications and where rules enable the air pressure switch to merely control fan operation (without any reference to CO limits).

6.6.6 Minimum gas pressure switch

Adjust the minimum gas pressure switch after performing all the other burner adjustments with the pressure switch set to the start of the scale (Fig. 33).

With the burner operating at maximum output, increase adjustment pressure by slowly turning the relative knob clockwise until the burner locks out.

Then turn the knob anticlockwise by 2 mbar and repeat burner start-up to ensure it is uniform.

If the burner locks out again, turn the knob anticlockwise again by 1 mbar.

![Connecting the pressure gauge with the pressure switch in differential mode](image2)
6.7 Operation sequence of the burner

6.7.1 Burner start-up
Control remote control TL closes (Fig. 34).
Servomotor starts: turn to the right, as far as the angle set on the cam with the orange lever.

After about 3s:
0 s The control box program starts up.
2 s The fan motor starts up.
3 s The servomotor starts up: turn to the right, until the contact intervenes on the cam with the red lever.
The air damper goes to 2nd stage output.
Pre-purging phase with air flow rate at 2nd stage output level. Duration 25 s.
28 s The servomotor starts up: turn to the left, as far as the angle set on the cam with the orange lever.
43 s The ignition electrode strikes a spark.
The air damper and gas butterfly valve are at 1st stage output level.
The safety valve VS opens, along with the adjustment valve VR, quick opening. The flame ignites with a small output - point A. The output gradually increases, and the valve slowly opens, until 1st stage output is reached - point B.
45 s The spark goes out.
53 s If the TR remote control is closed or replace with a jumper, the servomotor goes on rotating until the cam intervenes with the red lever, bring the air damper and gas butterfly valve to the 2nd stage - tract C-D.
End of control box program.

6.7.2 Operation

System equipped with TR remote control (Fig. 34)
Once the start-up cycle is completed, the servomotor command moves on to the TR remote control, that controls the pressure or temperature in the boiler - point D. (The control box still continues to check the presence of the flame and the correct position of the air pressure switch).

- When the temperature or pressure increases and opens the TR, the servomotor closes the gas butterfly valve and air damper, and the burner goes from the 2nd to the 1st operating stage - tract E/F.
- When the temperature or pressure falls and closes the TR, the servomotor opens the gas butterfly valve and air damper, and the burner goes from the 1st to the 2nd operating stage. The sequence repeats endlessly.
- The burner stops when the heat request is less than the amount of heat delivered by the burner in the 1st stage, tract G-H.
The TL remote control opens, and the servomotor returns to the 0° angle (limited by the cam with the light blue lever). The air damper closes completely to reduce heat losses to a minimum.

System not equipped with TR (replaced with jumper) (Fig. 34)
The burner is fired as described above. If the temperature or pressure increases until the TL opens, the burner shuts down (tract A-A in diagram Fig. 34).

6.7.3 Ignition failure
If the burner does not fire, it goes into lockout within 3s of the opening of the gas valve and within 49s of the closure of the TL remote control (Fig. 35).
The red LED of the control box comes on.

![Fig. 34](NORMAL IGNITION (n° = seconds from instant 0))

![Fig. 35](NO IGNITION)
6.7.4 Burner flame goes out during operation
If the flame accidentally goes out during operation, the burner will go into lockout within 1s.

6.8 Stopping of the burner
The burner can be stopped by:
- intervening on the disconnecting switch of the electrical supply line, located on the boiler panel;
- removing the casing and intervening on the switch (Fig. 27, page 25).

6.9 Final checks (with burner operating)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤</td>
<td>Open the thermostat/pressure switch TL</td>
</tr>
<tr>
<td>➤</td>
<td>Open the thermostat/pressure switch TS</td>
</tr>
<tr>
<td>➤</td>
<td>Turn the air pressure switch to the maximum end of scale position</td>
</tr>
<tr>
<td>➤</td>
<td>Turn off the burner and cut off the power</td>
</tr>
<tr>
<td>➤</td>
<td>Disconnect the minimum gas pressure switch connector</td>
</tr>
<tr>
<td>➤</td>
<td>Disconnect the wire of the ionisation probe</td>
</tr>
</tbody>
</table>

The burner must stop

The burner must stop in lockout

The burner must not start

The burner must stop in lockout due to ignition failure

Make sure that the mechanical locking systems on the various adjustment devices are fully tightened.

6.9.1 Checking the air and gas pressure on the combustion head
To check the air and gas pressure on the burner pipe coupling, install the relative pressure gauges as shown in Fig. 36.
7 Maintenance

7.1 Notes on safety for the maintenance

The periodic maintenance is essential for the good operation, safety, yield and duration of the burner. It allows you to reduce consumption and polluting emissions and to keep the product in a reliable state over time.

The maintenance interventions and the calibration of the burner must only be carried out by qualified, authorised personnel, in accordance with the contents of this manual and in compliance with the standards and regulations of current laws.

Before carrying out any maintenance, cleaning or checking operations:

- Disconnect the electrical supply from the burner by means of the main system switch.
- Turn off the fuel interception tap.
- Wait for the components in contact with heat sources to cool down completely.

7.2 Maintenance programme

7.2.1 Maintenance frequency

The gas combustion system should be checked at least once a year by a representative of the manufacturer or another specialised technician.

7.2.2 Checking and cleaning

The operator must use the required equipment during maintenance.

Combustion

The optimum calibration of the burner requires an analysis of the flue gases. Significant differences with respect to the previous measurements indicate the points where most care should be exercised during maintenance.

Gas leaks

Make sure that there are no gas leaks on the pipe between the gas meter and the burner.

Gas filter

Change the gas filter when it is dirty.

Combustion head

Open the burner and make sure that all the components of the combustion head are:
- undamaged;
- not deformed due to high temperature;
- free of ambient dirt or dust;
- free of rusted materials;
- correctly positioned;

Check the gas outlet holes for the ignition phase (in the distributor of the combustion head) are free of impurities or rust. If in doubt, disassemble the elbow 5)(Fig. 38).

Flame inspection window

Clean the glass of the flame inspection window.

Servomotor

Release the cam 4)(Fig. 30, page 26) from the servomotor, by pressing and shifting the button 3)(Fig. 31, page 27) to the right. Manually rotate it backwards and forwards to make sure it moves smoothly. Now engage the cam again by shifting the button 2)(Fig. 30, page 26) to the left.

Burner

Check for excess wear or loose screws in the mechanisms controlling the air damper and the gas butterfly valve. Also make sure that the screws securing the electrical leads in the burner connections are fully tightened. Clean the outside of the burner, taking special care with the articulated couplings and the cam 4)(Fig. 30, page 26).

Fan

Check to make sure that no dust has accumulated inside the fan or on its blades, as this condition will cause a reduction in the air flow rate and provoke polluting combustion.
Boiler

Clean the boiler as indicated in its accompanying instructions in order to maintain all the original combustion characteristics intact, especially the flue gas temperature and combustion chamber pressure.

Combustion

In case the combustion values found at the beginning of the intervention do not respect the standards in force or, in any case, do not correspond to a proper combustion, contact the Technical Assistant in order to carry out the necessary adjustments.

Tab. M

<table>
<thead>
<tr>
<th>GAS</th>
<th>Theoretical max CO₂</th>
<th>CO₂ % Calibration</th>
<th>Excess air</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 % O₂</td>
<td>mg/kWh</td>
<td>Max. output.</td>
<td>Max. output.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>λ ≤ 1.2</td>
<td>λ ≤ 1.3</td>
</tr>
<tr>
<td>G 20</td>
<td>11.7</td>
<td>9.7</td>
<td>9</td>
<td>1.2</td>
</tr>
<tr>
<td>G 25</td>
<td>11.5</td>
<td>9.5</td>
<td>8.8</td>
<td>1.3</td>
</tr>
<tr>
<td>G 30</td>
<td>14.0</td>
<td>11.6</td>
<td>10.7</td>
<td>1.3</td>
</tr>
<tr>
<td>G 31</td>
<td>13.7</td>
<td>11.4</td>
<td>10.5</td>
<td>1.3</td>
</tr>
</tbody>
</table>

DANGER

Disconnect the electrical supply from the burner by means of the main system switch.

DANGER

Turn off the fuel interception tap.

Wait for the components in contact with heat sources to cool down completely.

7.3 Opening the burner

- Loosen the screws 1) and remove the hood 2)(Fig. 38).
- Disengage the articulated coupling 7) from the graduated sector 8).
- Remove the screws 3) and move the burner backwards by about 100 mm on the slide bars 4). Disconnect the probe and electrode leads and then pull the burner fully back.
- Now extract the gas distributor 5) after having removed the screw 6).

7.4 Closing the burner

- Push the burner to approximately 100mm from the pipe coupling.
- Reconnect the cables and slide in the burner until it comes to a stop.
- Replace the screws 3)(Fig. 38) and carefully pull the probe and electrode cables out until they are slightly taut.
- Reconnect the articulated coupling 7) to the graduated sector 8).

After carrying out maintenance, cleaning or checking operations, reassemble the hood and all the safety and protection devices of the burner.
8.1 Burner start-up cycle diagnostics

During start-up, indication is according to the colour code table (Tab. N).

Key (Tab. N)

- Off
- Yellow
- Green
- Red

<table>
<thead>
<tr>
<th>Sequences</th>
<th>Colour code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-purging</td>
<td>⬤</td>
</tr>
<tr>
<td>Ignition phase</td>
<td>⬤</td>
</tr>
<tr>
<td>Operation, flame OK</td>
<td>🟢</td>
</tr>
<tr>
<td>Operation with weak flame signal</td>
<td>⬤</td>
</tr>
<tr>
<td>Electrical supply below ~ 170V</td>
<td>⬤</td>
</tr>
<tr>
<td>Lockout</td>
<td>🟢</td>
</tr>
<tr>
<td>Extraneous light</td>
<td>🟢</td>
</tr>
</tbody>
</table>

Tab. N

8.2 Resetting of control box and diagnostics use

The control box features a diagnostics function through which any causes of malfunctioning are easily identified (indicator: RED LED).

To use this function, you must wait at least 10 seconds once it has entered the safety condition (lockout), and then press the reset button.

The control box generates a sequence of pulses (1 second apart), which is repeated at constant 3-second intervals. Once you have seen how many times the light blinks and identified the possible cause, the system must be reset by holding the button down for 1 - 3 seconds.

<table>
<thead>
<tr>
<th>RED LED lit wait for at least 10s</th>
<th>Lockout</th>
<th>Press reset for > 3s</th>
<th>Pulses</th>
<th>3s interval</th>
<th>Pulses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>⬤</td>
<td>⬤</td>
<td></td>
</tr>
</tbody>
</table>

Tab. O

The methods that can be used to reset the control box and use diagnostics are given below.

8.3 Control box reset

To carry out the control box reset, proceed as follows:

- Hold the button down for between 1 and 3 seconds. The burner restarts after a 2-second pause once the button is released.

In case the burner does not restart it is necessary to check if the limit thermostat (TL) is closed.

8.4 Visual diagnostics

Indicates the type of burner malfunction causing lockout.

To view diagnostics, proceed as follows:

- Hold the button down for more than 3 seconds once the red LED (burner lockout) remains steadily lit.
- A yellow light blink to tell you the operation is done.
- Release the button once the light has blinked. The number of blinks indicates the reason for the malfunctioning (refer to the coding in Tab. P).
8.5 Software diagnostics

Gives an analysis of the life of the burner, through optical connections with a PC showing the working hours, number and types of lockout, control box serial number etc.

To view diagnostics, proceed as follows:

- Hold the button down for more than 3 seconds once the red LED (burner lockout) remains steadily lit. A yellow light blink to tell you the operation is done.
- Release the button for 1 second and then press again for over 3 seconds until the yellow light blinks again.

Once the button is released, the red LED will flash intermittently with a higher frequency: only now can the optical link be activated.

Once the operations are done, the control box’s initial status must be restored using the resetting procedure described above.

Pressing the button

<table>
<thead>
<tr>
<th>Pressing the button</th>
<th>Control box status</th>
</tr>
</thead>
<tbody>
<tr>
<td>From 1 to 3 seconds</td>
<td>Reset of the control box without showing the visual diagnostics</td>
</tr>
<tr>
<td>More than 3 seconds</td>
<td>Visual diagnostics of the lockout condition: (LED blinks at 1-second intervals)</td>
</tr>
<tr>
<td>More than 3 seconds starting from the condition of visual diagnostics</td>
<td>Software diagnostics, with the help of optical interface and PC (possibility to visualise the working hours, irregularities, etc.)</td>
</tr>
</tbody>
</table>

The sequence of led pulses issued by the control box identifies the possible types of malfunction, which are listed in the table Tab. P.

Signal Problem Possible cause Recommended remedy

<table>
<thead>
<tr>
<th>2 blinks</th>
<th>Once the pre-purging phase and safety time have passed, the burner goes into lockout without the appearance of the flame</th>
<th>The operation solenoid lets little gas through</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 blinks</td>
<td>One of the two solenoid valves does not open</td>
<td>Gas pressure too low</td>
<td>Replace them</td>
</tr>
<tr>
<td>2 blinks</td>
<td>Ignition electrode incorrectly adjusted</td>
<td>Electrode grounded due to broken insulation</td>
<td>Adjust it</td>
</tr>
<tr>
<td>2 blinks</td>
<td>High voltage cable defective</td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>2 blinks</td>
<td>High voltage cable deformed by high temperature</td>
<td>Replace and protect</td>
<td></td>
</tr>
<tr>
<td>2 blinks</td>
<td>Faulty ignition transformer</td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>2 blinks</td>
<td>Incorrect valve or transformer electrical wiring</td>
<td>Check</td>
<td></td>
</tr>
<tr>
<td>2 blinks</td>
<td>Defective control box</td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>2 blinks</td>
<td>A closed valve upline the gas train</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>2 blinks</td>
<td>Air in pipework</td>
<td>Bleed air</td>
<td></td>
</tr>
<tr>
<td>2 blinks</td>
<td>Gas valves unconnected or with interrupted coil</td>
<td>Check connections or replace coil</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 blinks</th>
<th>The burner does not switch on, and the lockout appears</th>
<th>Air pressure switch in operating position</th>
<th>Adjust or replace</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 blinks</td>
<td>The burner starts and then goes into lockout</td>
<td>Air pressure switch inoperable due to insufficient air pressure:</td>
<td>Adjust or replace</td>
</tr>
<tr>
<td>3 blinks</td>
<td>Air pressure switch poorly adjusted</td>
<td>Clean</td>
<td></td>
</tr>
<tr>
<td>3 blinks</td>
<td>Pressure switch pressure point pipe blocked</td>
<td>Adjust</td>
<td></td>
</tr>
<tr>
<td>3 blinks</td>
<td>Poorly adjusted head</td>
<td>Connect air pressure switch to fan suction line</td>
<td></td>
</tr>
<tr>
<td>3 blinks</td>
<td>High pressure in the furnace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 blinks</td>
<td>Lockout during pre-purging phase</td>
<td>Defective motor control contactor</td>
<td>Replace</td>
</tr>
<tr>
<td>3 blinks</td>
<td>Defective electrical motor</td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>3 blinks</td>
<td>Motor lockout</td>
<td>Replace</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 blinks</th>
<th>The burner starts and then goes into lockout</th>
<th>Flame simulation</th>
<th>Replace the control box</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 blinks</td>
<td>Lockout when the burner stops</td>
<td>Permanent flame in the combustion head or flame simulation</td>
<td>Eliminate persistence of flame or replace control box</td>
</tr>
</tbody>
</table>

<p>| 6 blinks | The burner switches on, but then stops in lockout | Defective or incorrectly adjusted servomotor | Adjust or replace |</p>
<table>
<thead>
<tr>
<th>Signal</th>
<th>Problem</th>
<th>Possible cause</th>
<th>Recommended remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 blinks</td>
<td>The burner goes into lockout immediately following the appearance of the flame</td>
<td>The operation solenoid lets little gas through</td>
<td>Increase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ionisation probe incorrectly adjusted</td>
<td>Adjust</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insufficient ionisation (less than 5 µA)</td>
<td>Check probe position</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Earth probe</td>
<td>Withdraw or replace cable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Burner poorly grounded</td>
<td>Check grounding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phase and neutral connections inverted</td>
<td>Invert them</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defective flame detection circuit</td>
<td>Replace control box</td>
</tr>
<tr>
<td></td>
<td>Lockout of burner upon transit between 1st and 2nd stage, or between 2nd and 1st stage</td>
<td>Too much air or too little gas</td>
<td>Adjust air and gas</td>
</tr>
<tr>
<td></td>
<td>Burner goes into lockout during operation</td>
<td>Probe or ionisation cable grounded</td>
<td>Replace worn parts</td>
</tr>
<tr>
<td>10 blinks</td>
<td>The burner does not switch on, and the lockout appears</td>
<td>Incorrect electrical wiring</td>
<td>Check</td>
</tr>
<tr>
<td></td>
<td>The burner goes into lockout</td>
<td>Defective control box</td>
<td>Replace</td>
</tr>
<tr>
<td></td>
<td>Presence of electromagnetic disturbances in the thermostat lines</td>
<td>Filter or eliminate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presence of electromagnetic disturbance</td>
<td>Use the radio disturbance protection kit</td>
<td></td>
</tr>
<tr>
<td>No blink</td>
<td>The burner does not start</td>
<td>No electricity supply</td>
<td>Close all switches and check connections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A limiter or safety control device is open</td>
<td>Adjust or replace</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Line fuse blocked</td>
<td>Replace</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defective control box</td>
<td>Replace</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No gas supply</td>
<td>Open the manual valves between contactor and train</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mains gas pressure insufficient</td>
<td>Contact your gas company</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum gas pressure switch fails to close</td>
<td>Adjust or replace</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Servomotor fails to move to min. ignition position</td>
<td>Replace</td>
</tr>
<tr>
<td></td>
<td>The burner continues to repeat the start-up cycle, without lockout</td>
<td>The gas pressure in the gas mains lies very close to the value to which the gas pressure switch has been set. The sudden pressure drop after valve opening causes the temporary opening of the pressure switch itself; the valve immediately closes and the burner comes to a halt. Pressure increases again, the pressure switch closes again and the ignition cycle is repeated. The sequence repeats endlessly.</td>
<td>Reduce the intervention pressure of the minimum gas pressure switch. Replace the gas filter cartridge.</td>
</tr>
<tr>
<td></td>
<td>Ignition with pulsations</td>
<td>Poorly adjusted head</td>
<td>Adjust</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ignition electrode incorrectly adjusted</td>
<td>Adjust</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incorrectly adjusted fan air damper: too much air</td>
<td>Adjust</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output during ignition phase is too high</td>
<td>Reduce</td>
</tr>
<tr>
<td>Ignition with pulsations</td>
<td>The burner does not pass to the 2nd stage</td>
<td>Remote control device TR fails to close</td>
<td>Adjust or replace</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defective control box</td>
<td>Replace</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defective servomotor</td>
<td>Replace</td>
</tr>
<tr>
<td></td>
<td>Burner stops with air damper open</td>
<td>Defective servomotor</td>
<td>Replace</td>
</tr>
</tbody>
</table>
8.6 Normal operation / flame detection time

The control box has a further function to guarantee the correct burner operation (signal: GREEN LED permanently on).

To use this function, wait at least ten seconds from the burner ignition and then press the control box button for a minimum of 3 seconds.

After releasing the button, the GREEN LED starts flashing, as shown in the diagram below.

<table>
<thead>
<tr>
<th>GREEN LED ON</th>
<th>Press the button for > 3s</th>
<th>Signal</th>
<th>3s interval</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>wait at least 10s</td>
<td></td>
<td>⬤⬤⬤⬤⬤⬤⬤</td>
<td>⬤⬤⬤⬤⬤⬤⬤</td>
<td></td>
</tr>
</tbody>
</table>

The pulses of the LED constitute a signal spaced by approximately 3 seconds.

The number of pulses will measure the probe detection time since the opening of gas valves, according to: Tab. Q

<table>
<thead>
<tr>
<th>Signal</th>
<th>Flame detection time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 blink</td>
<td>0.4 s</td>
</tr>
<tr>
<td>2 blinks</td>
<td>0.8 s</td>
</tr>
<tr>
<td>6 blinks</td>
<td>2.8 s</td>
</tr>
</tbody>
</table>

Tab. Q

This is updated in every burner start-up.

Once read, the burner repeats the start-up cycle by briefly pressing the control box button.

If the result is > 2 s, ignition will be retarded. Check the adjustment of the hydraulic brake of the gas valve, the air damper and the combustion head adjustment.

In the event of a burner lockout, more than two consecutive burner reset operations could cause damage to the installation. On the third lockout, contact the Aftersales Service.

If further lockouts or burner faults occur, interventions must only be made by qualified, authorised personnel (as indicated in this manual, and in compliance with the laws and regulations currently in force).
Appendix - Accessories

A Appendix - Accessories

Long head kit

<table>
<thead>
<tr>
<th>Burner</th>
<th>Standard head length (mm)</th>
<th>Extended head length (mm)</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS 150</td>
<td>280</td>
<td>415</td>
<td>20052186</td>
</tr>
</tbody>
</table>

Spacer kit

<table>
<thead>
<tr>
<th>Burner</th>
<th>Thickness (mm)</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS 150</td>
<td>135</td>
<td>3010129</td>
</tr>
</tbody>
</table>

Continuous purging kit

<table>
<thead>
<tr>
<th>Burner</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS 150</td>
<td>3010094</td>
</tr>
</tbody>
</table>

Soundproofing chamber

<table>
<thead>
<tr>
<th>Burner</th>
<th>Type</th>
<th>Reduction of noise average</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS 150</td>
<td>C4/5</td>
<td>10 [dB(A)]</td>
<td>3010404</td>
</tr>
</tbody>
</table>

Maximum gas pressure switch Kit

<table>
<thead>
<tr>
<th>Burner</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS 150</td>
<td>3010493</td>
</tr>
</tbody>
</table>

PC interface kit

<table>
<thead>
<tr>
<th>Burner</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS 150</td>
<td>3002719</td>
</tr>
</tbody>
</table>

Kit for LPG operation

<table>
<thead>
<tr>
<th>Burner</th>
<th>Head length (mm)</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS 150</td>
<td>TC</td>
<td>20050064</td>
</tr>
<tr>
<td></td>
<td>TL</td>
<td>20050065</td>
</tr>
</tbody>
</table>

Differential circuit breaker kit

<table>
<thead>
<tr>
<th>Burner</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS 150</td>
<td>3010329</td>
</tr>
</tbody>
</table>

Radio disturbance protection kit

<table>
<thead>
<tr>
<th>Burner</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS 150</td>
<td>3010386</td>
</tr>
</tbody>
</table>

If the burner is installed in places particularly subject to radio disturbance (emission of signals exceeding 10V/m) owing to the presence of an INVERTER, or in applications where the length of the thermostat connections exceeds 20 metres, a protection kit is available as an interface between the control box and the burner.

Gas trains in compliance with EN 676

Please refer to manual.
Appendix - Electrical panel layout

Electrical system adjusted in factory

Key
CMV Motor contactor
DA Control box (Landis RMG88.62A2)
F1 Filter to protect against radio disturbance
K1 Relay
I1 Switch: burner operation / stop
I2 Switch: 1st - 2nd stage
MB Burner terminal strip
MV Fan motor
PA Air pressure switch
RT Thermal relay
SM Servomotor
SO Ionisation probe
SP Plug-socket
TA Ignition transformer
TB Burner earth

WARNING
In the case of a phase/phase power supply, it is necessary to install a jumper in the control box terminal board, between clamp 6 and the earthing clamp.
Appendix - Electrical panel layout

Electrical connection of burner without gas valve seal control

Electrical connection of burner with VPS gas valve seal control

The leak detection control takes place immediately before each burner start-up.

WARNING

Fuse and shielded cable section - see the table below.

Cable sections not indicated: 1.5 mm².

<table>
<thead>
<tr>
<th></th>
<th>230 V</th>
<th>460 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>12A aM</td>
<td>8A aM</td>
</tr>
<tr>
<td>L</td>
<td>mm²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Key

IN Burner manual stop switch
XP Plug for leak detection control
MB Burner terminal strip
PG Min. gas pressure switch
S Remote lockout signal
S1 Remote lockout signal due to leak detection control
TR Adjustment remote control: commands 1st and 2nd operating stages.
 If you want the burner to have one-stage operation, replace the TR with a jumper.
TL Limiter control device: shuts down the burner when the temperature or pressure in the boiler reaches the maximum pre-set value.
 TS Safety limit control device: intervenes in the event of TL failure.
VR Adjustment valve
VS Safety valve

F 12A aM
A 8A aM
25A gG
16A gG
2.5
2.5